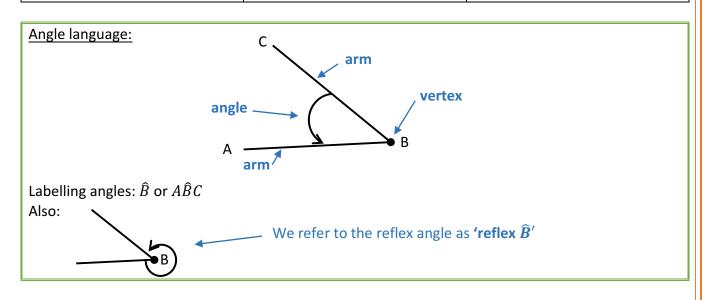
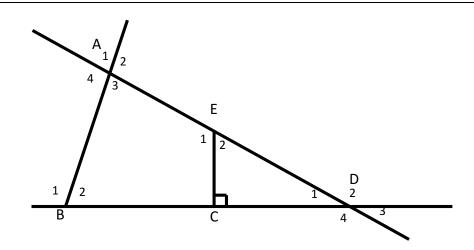
Geometry (Part 1)

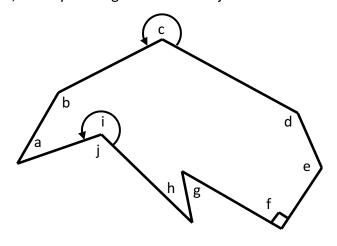
Lines and angles


A **line** is an infinite number of points between two end points.

Where two lines meet or cross, they form an angle.

An **angle** is an amount of rotation. It is measured in **degrees**.


Types of angles			
Name of angle	Size of angle		
Acute angle		Between 0° and 90°	
Right angle	<u></u>	Equal to 90°	
Obtuse angle	5	Between 90° and 180°	
Straight line		Equal to 180°	
Reflex angle		Between 180° and 360°	
Revolution/angles around a point	<u> </u>	Equal to 360°	


Terminology		
Intersect A D B	AB and CD intersect (cross or cut) at E	
Bisect D D B	AB bisect (cuts in half) CD	
Complementary angles Angles that add up to 90° Supplementary angles	E.g. the complement of 48° is 42°	
Angles that add up to 180°	E.g. the supplement of 130° is 50°	
Adjacent angles	Angles that have a common vertex and a common arm $\rightarrow p$ and q are adjacent angles.	
$m / n \qquad \therefore m + n = 180^{\circ}$		
Perpendicular lines A This little block indicates to us that the lines are perpendicular. B D	Lines that meet or cross at 90° . AB \perp CD Symbol for 'perpendicular'	

Exercise 1:

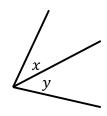
- (a) In the diagram below name:
 - (1) 5 acute angles
 - (2) 2 right angles
 - (3) 10 pairs of adjacent angles
 - (4) 3 obtuse angles

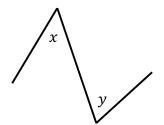
(b) In the diagram below, classify the angles labelled a - j. The first one is done for you as an example:

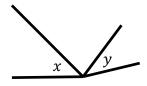
a: Acute

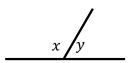
b:

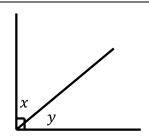
c:			
L.			

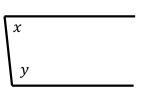

d: ____


f:_____


h: _____


j:_____


(c) Consider the angles marked x and y. State whether they are adjacent or not:



(d) Complete the table by filling in the missing information:

Measure of angle	Complement	Supplement
37°	$90^{\circ} - 37^{\circ} = 59^{\circ}$	$180^{\circ} - 37^{\circ} = 143^{\circ}$
20°		
77°		
101°		
90°		
96°		
х		
у		

REMEMBER: Adjacent angles on a straight line are supplementary.

If they are adjacent angles on a straight line, then they add up to 180° .

Example:

Determine, with reason, the value of x:

120°/x

Statement	Reason
$x = 180^{\circ} - 120^{\circ}$	Adj ∠'s on a str line

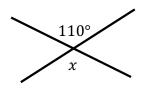
We use these abbreviations to make our lives a little bit easier! *there is a complete summary on page

In geometry we always need to provide **reasons** for 'why' we state something.

<u>Exercise 2:</u>

Calculate the size of the variables $(a, b, c \ and \ d)$. Give a reason for your answer.

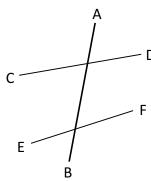
		Statement	Reason
(a)	a 50°		
(b)	10° b 60°		
(c)	2 <i>c</i> 120°		
(d)	$d + 20^{\circ}/d$		


Vertically opposite angles:

When two straight lines intersect the angles opposite each other are called **vertically opposite** angles.

Vertically opposite angles are equal to each other.

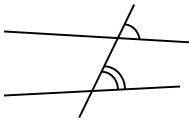
Example:


Determine, with reason, the value of x:

Statement	Reason
$x = 110^{\circ}$	Vert opp ∠'s

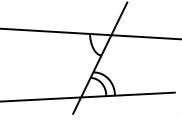
Transversals

If a line cuts or touches another line, it is called a transversal.



e.g. AB is a transversal because it cuts CD and EF, CD and EF are also transversals of AB.

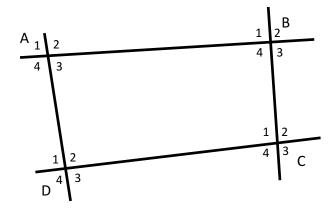
Transversals creates three important types of angles, namely:


- 1. Corresponding angles
- 2. Co-interior angles
- 3. Alternating angles

1. Corresponding angles are in the *same position* as each other. They make a ${\sf F}$ shape:

2. Co-interior angles are *between the lines* and *on the same side* of the transversal. They are "inside together". They make a C or U shape.

3. Alternate angles are *between the lines* and on *alternate (opposite) sides* of the transversal. They make a Z or N shape.



Remember the word FUN whenever you see a transversal!

Exercise 3:

Use the diagram below to find:

- (a) 10 pairs of corresponding angles
- (b) 8 pairs of vertically opposite angles
- (c) 4 pairs of co-interior angles
- (d) 8 pairs of alternate angles
- (e) 6 pairs of adjacent supplementary angles

Exercise 4:

Find the value of each variable, in alphabetical order (where there is more than one variable), providing reasons for your statements:

Use the following reasons to help you complete Ex 4 and 5

- Adj ∠'s on a str Line
- Adj comp ∠'s
- Vert opp ∠'s
- ∠'s at a pt

		Statement	Reason
(a)	95° x		
(b)	x 145° 40°		
(c)	y 40° x		
(d)	50° 60° x y		
(e)	10° y x		

Exercise 5:

Use the diagram to write down an equation, with a reason, in order to calculate the value of x:

		Statement	Reason
(a)	70° x + 20°		
(b)	$x + 20^{\circ} \qquad 2x - 50^{\circ}$		
(c)	$140^{\circ}/3x - 10^{\circ}$		

Parallel lines

Parallel lines are lines that stay the **same distance apart**, no matter how long the lines are (they are lines that never meet).

Arrows are used to indicate that lines are

If lines are **parallel** then:

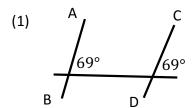
- The corresponding angles are equal
- The alternate angles are equal
- The co-interior angles are supplementary

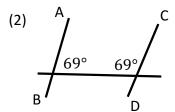
Reasons: corr ∠'s; ...//...

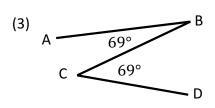
alt ∠'s;...//... ✓ co-int ∠'s;...//...

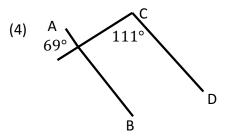
NB: You have to mention the parallel lines

To prove lines are parallel:


Prove the corresponding angles are equal $corr \angle's = 2$ Prove the alternate angles are equal $corr \angle's = 2$ Prove the co-interior angles are supplementary $co-int \angle's = 2$


Let's see in Exercise 6 how these parallel lines can help us determine the value of unknown angles...


Exercise 6:


(a) Determine the sizes of the angles marked with variables, in alphabetical order. Give reasons for your answers. (The first one is done for you as an example)

		Statement	Reason
(1)	Α	$x = 108^{\circ}$	Corr ∠'s ; AB//CD
\-'	I = I	$y = 180 - 108^{\circ}$	Adj ∠'s on a str line
	\mathcal{T}	$y = 72^{\circ}$, , , , , , , , , , , , , , , , , , ,
	x/		
	$\frac{108^{\circ}}{y}$		
	B / 3/		
	D'		
(2)	G		
	E. W		
	88°		
	x		
	'\ н		
	\		
	F		
(3)			
	100°		
	$\left \frac{1}{x} \right $		
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
	R Z		
	/		
(4)	A A C		
(4)	M O		
	x		
	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \		
	N P		
(5)	Q, S,		
` ′	U_\		
	71°		
	$W \xrightarrow{x} W$		
	X		
	\ \		
	R _T		

Summary of statements and reasons		
Statement	Reason	
Angles on a straight line adds up to 180°	Adj ∠'s on a str line	
Complementary angles adds up to 90°	Adj comp ∠'s	
Vertically opposite angles are equal	Vert opp ∠'s	
Angles around a point adds up to 360°	∠'s at a pt	
Corresponding angles of parallel lines are equal	Corr ∠'s ;//	
Co-interior angles between parallel lines add	Co-int ∠' ;//	
up to 180°		
Alternating angles of parallel lines are equal	Alt ∠'s ;//	

^{*}Please note that none of the diagrams in this workbook are drawn according to scale.

MEMO

Exercise 1:

- (a.1) \hat{A}_1 ; \hat{A}_3 ; \hat{E}_2 ; \hat{D}_1 ; \hat{D}_3 ; \hat{B}_2 (any five)
- (a.2) $E\hat{C}B$ and $E\hat{C}D$
- (a.3) \hat{A}_1 and \hat{A}_2 ; \hat{A}_2 and \hat{A}_3 ; \hat{A}_3 and \hat{A}_4 ; \hat{B}_1 and \hat{B}_2 ; $E\hat{C}B$ and $E\hat{C}D$; \widehat{D}_1 and \widehat{D}_2 ; \widehat{D}_2 and \widehat{D}_3 ; \widehat{D}_3 and \widehat{D}_4 \hat{A}_1 and \hat{A}_4 ; \widehat{D}_1 and \widehat{D}_4 ; \widehat{E}_1 and \widehat{E}_2
- (a.4) \hat{A}_2 ; \hat{A}_4 ; \hat{E}_1 ; \hat{D}_2 ; \hat{D}_4 ; \hat{B}_1 (any three)
- (b) b: Obtuse
 - c: Reflex
 - d: Obtuse
 - e: Obtuse
 - f: Right
 - g: Acute
 - h: Acute
 - i: Reflex
 - j: Obtuse
- (c.1) Adjacent
- (c.2) Not adjacent (does not share a common point)
- (c.3) Not adjacent (does not share a common arm)
- (c.4) Adjacent
- (c.5) Adjacent
- (c.6) Not adjacent (does not share a common point)

(d)

·			
Measure of angle	Complement	Supplement	
20°	70°	160°	
77°	13°	103°	
101°	No complement	79°	
90°	0°	90°	
96°	No complement	84°	
x	90° – x	180° − <i>x</i>	
у	90° – <i>y</i>	180° − <i>y</i>	

Exercise 2:

		Statement	Reason
(a)	a 50°	$a = 180^{\circ} - 150^{\circ}$ $\therefore a = 130^{\circ}$	Adj ∠'s on a str line
(b)	10° b/60°	$b = 180^{\circ} - 10^{\circ} - 60^{\circ}$ $\therefore b = 110^{\circ}$	Adj ∠'s on a str line
(c)	2 <i>c</i> 120°	$2c = 180^{\circ} - 120^{\circ}$ $2c = 60^{\circ}$ $c = \frac{60^{\circ}}{2}$ $\therefore c = 30^{\circ}$	Adj ∠'s on a str line
(d)	$d + 20^{\circ} d$	$d + 20^{\circ} + d = 180^{\circ}$ $2d = 180^{\circ} - 20^{\circ}$ $2d = 160^{\circ}$ $d = \frac{160^{\circ}}{2}$ $d = 80^{\circ}$	Adj ∠'s on a str line

Exercise 3:

- (a) \hat{A}_1 and \hat{B}_1 ; \hat{A}_2 and \hat{B}_2 ; \hat{A}_3 and \hat{B}_3 ; \hat{A}_4 and \hat{B}_4 ; \hat{A}_1 and \hat{D}_1 ; \hat{A}_2 and \hat{D}_2 ; \hat{A}_3 and \hat{D}_3 ; \hat{A}_4 and \hat{D}_4 \hat{B}_1 and \hat{C}_1 ; \hat{B}_2 and \hat{C}_2 ; \hat{B}_3 and \hat{C}_3 ; \hat{B}_4 and \hat{C}_4 ; \hat{C}_1 and \hat{D}_1 ; \hat{C}_2 and \hat{D}_2 ; \hat{C}_3 and \hat{D}_3 ; \hat{C}_4 and \hat{D}_4 (any ten pairs)
- (b) \hat{A}_1 and \hat{A}_3 ; \hat{A}_2 and \hat{A}_4 ; \hat{B}_1 and \hat{B}_3 ; \hat{B}_2 and \hat{B}_4 ; \hat{C}_1 and \hat{C}_3 ; \hat{C}_2 and \hat{C}_4 ; \hat{D}_1 and \hat{D}_3 ; \hat{D}_2 and \hat{D}_4
- (c) \hat{A}_3 and \hat{D}_2 ; \hat{A}_4 and \hat{D}_1 ; \hat{A}_2 and \hat{B}_1 ; \hat{B}_4 and \hat{C}_1 ; \hat{B}_3 and \hat{C}_2 ; \hat{C}_1 and \hat{D}_2 ; \hat{C}_4 and \hat{D}_3 (any four)
- (d) \hat{A}_2 and \hat{B}_4 ; \hat{A}_4 and \hat{D}_2 ; \hat{A}_3 and \hat{D}_1 ; \hat{B}_1 and \hat{A}_3 ; \hat{B}_4 and \hat{C}_2 ; \hat{B}_3 and \hat{C}_1 ; \hat{C}_1 and \hat{D}_3 ; \hat{C}_4 and \hat{D}_2
- (e) Any two angles that are on a straight line and share the same point.

Exercise 4:

		Statement	Reason
(a)	95° / x	$x = 95^{\circ}$	Vert opp ∠'s

·	1100		Grade
(b)	145° 40°	$x = 180^{\circ} - 145^{\circ}$ $\therefore x = 35^{\circ}$	Adj ∠'s on a str line
(c)	y 40°	$x = 90^{\circ} - 40^{\circ}$ $\therefore x = 50^{\circ}$ $y = 90^{\circ}$	Adj comp ∠'s
(d)	50° 60° x y	$x + 50^{\circ} + 60^{\circ} = 180^{\circ}$ $x = 180^{\circ} - 50^{\circ} - 60^{\circ}$ $x = 70^{\circ}$ $y = 50^{\circ}$ $z = 60^{\circ}$	Adj \angle 's on a str line Vert opp \angle 's Vert opp \angle 's
(e)	80° y x	$x = 90^{\circ}$ $y = 90^{\circ}$	Adj ∠'s on a str line Vert opp ∠'s

Exercise 5:

		Statement	Reason
(a)	\ /	$70^{\circ} = x + 20^{\circ}$	Vert opp ∠'s
	$70^{\circ} x + 20^{\circ}$	$\therefore x = 50^{\circ}$	
(b)		$x + 20^{\circ} = 2x - 50^{\circ}$ $20^{\circ} + 50^{\circ} = x$ $70^{\circ} = x$	Vert opp ∠'s
	$x + 20^{\circ} 2x - 50^{\circ}$	$\therefore x = 70^{\circ}$	
(c)	140° $2x - 10^{\circ}$	$2x - 10^{\circ} + 140^{\circ} = 180^{\circ}$ $2x + 130^{\circ} = 180^{\circ}$ $2x = 50^{\circ}$	Adj ∠'s on a str line
		$x = 25^{\circ}$	

Exercise 6:

		Statement	Reason
(2)	G	$x = 88^{\circ}$	Vert opp ∠'s
	E 88° y H	y = 88°	Corr ∠'s ; EF // GH
	∨ _F		
(3)	, ,	$x + 51^{\circ} = 180^{\circ}$	Co-int ∠'s ; IJ // KL
	100°	$ \begin{array}{l} \therefore x = 129^{\circ} \\ y = 100^{\circ} \end{array} $	Corr ∠'s ; IJ // KL
	$\frac{1}{x}$	$z = 180^{\circ} - 100^{\circ}$	Adj \angle 's on a str line
	$\kappa \xrightarrow{51^{\circ}} \xrightarrow{y} \stackrel{L}{z}$	∴ z = 80°	
(4)	M O x P	$x = 62^{\circ}$	Alt ∠'s ; MN // OP
(5)	Q _\ s _\	$x = 71^{\circ}$	Alt ∠'s; UV // WX
	V V V X Y X X Y X Y	$y + 71^{\circ} = 180^{\circ}$ $\therefore y = 109^{\circ}$	Co-int ∠'s ; QR // ST

- (b.1) AB // DC because corresponding angles are equal.
- (b.2) AB will not be parallel to DC because the co-interior angles are not supplementary.
- (b.3) AB // DC because the alternating angles are equal.
- (b.4) AB // DC because the co-interior angles will be supplementary.